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...going one step further

Torsion Pendulum According to Prof. Pohl 1002956

Operating instructions
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Exciter motor

Control knob for fine adjustment of the exciter voltage
Control knob for coarse adjustment of the exciter voltage
Scale ring

Pendulum body

Coil spring

Pointer for the exciter phase angle

Pointer for the pendulum’s phase angle

Pointer for the pendulum’s deflection

Exciter

Eddy current brake

Guide slot and screw to set the exciter amplitude
Connecting rod

Eccentric drive wheel

4-mm safety socket for exciter voltage measurement
4-mm safety sockets for the exciter motor power supply
4-mm safety sockets for the eddy current brake power
supply

SEEEHEISECOROCICRICS)

The torsion pendulum may be used to investigate free,
forced and chaotic oscillations with various degrees of
damping.

Experiment topics:

e Free rotary oscillations at various degrees of damp-
ing (oscillations with light damping, aperiodic os-
cillation and aperiodic limit)

e Forced rotary oscillations and their resonance
curves at various degrees of damping

e Phase displacement between the exciter and reso-
nator during resonance
Chaotic rotary oscillations
Static determination of the direction variable D

e Dynamic determination of the moment of inertia |

1. Safety instructions

e When removing the torsional pendulum from the
packaging do not touch the scale ring. This could

lead to damage. Always remove using the handles
provided in the internal packaging.

e When carrying the torsional pendulum always hold
it by the base plate.

e Never exceed the maximum permissible supply
voltage for the exciter motor (24 V DC).

e Do not subject the torsional pendulum to any un-
necessary mechanical stress.

2. Description, technical data

The Professor Pohl torsional pendulum consists of a
wooden base plate with an oscillating system and an
electric motor mounted on top. The oscillating system
is a ball-bearing mounted copper wheel (5), which is
connected to the exciter rod via a coil spring (6) that
provides the restoring torque. A DC motor with coarse
and fine speed adjustment is used to excite the tor-
sional pendulum. Excitement is brought about via an
eccentric wheel (14) with connecting rod (13) which




unwinds the coil spring then compresses it again in a
periodic sequence and thereby initiates the oscillation
of the copper wheel. The electromagnetic eddy cur-
rent brake (11) is used for damping. A scale ring (4)
with slots and a scale in 2-mm divisions extends over
the outside of the oscillating system; indicators are
located on the exciter and resonator.

The device can also be used in shadow projection dem-
onstrations.

Natural frequency: 0.5 Hz approx.
Exciter frequency: 0 to 1.3 Hz (continuously adjust-
able)
Terminals:
Motor: max. 24 VDC, 0.7 A,
via 4-mm safety sockets
Eddy current brake: 0to 20 V DC, max. 2 A,
via 4-mm safety sockets

Scale ring: 300 mm @
Dimensions: 400 mm x 140 mm x 270 mm
Ground: 4 kg

2.1 Scope of supply

1 Torsional pendulum

2 Additional 10 g weights
2 Additional 20 g weights

3. Theoretical Fundamentals

3.1 Symbols used in the equations

= Angular directional variable

Mass moment of inertia

Restoring torque

Period

Period of an undamped system

Period of the damped system

Mg = Amplitude of the exciter moment
Damping torque

Frequency

Time

Logarithmic decrement

Damping constant

Angle of deflection

Amplitude at timet=0s

Amplitude after n periods

Exciter amplitude

System amplitude

Natural frequency of the oscillating system
Natural frequency of the damped system
o Exciter angular frequency

O s = Exciter angular frequency for max. amplitude
Yo = System zero phase angle
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3.2 Harmonic rotary oscillation
A harmonic oscillation is produced when the restoring
torque is proportional to the deflection. In the case of

harmonic rotary oscillations the restoring torque is
proportional to the deflection angle o:
M=D-¢

The coefficient of proportionality D (angular direction
variable) can be computed by measuring the deflec-
tion angle and the deflection moment.

If the period duration T is measured, the natural reso-
nant frequency of the system w, is given by

w,=21/T
and the mass moment of inertia ] is given by

3.3 Free damped rotary oscillations

An oscillating system that suffers energy loss due to
friction, without the loss of energy being compensated
for by any additional external source, experiences a
constant drop in amplitude, i.e. the oscillation is
damped.

At the same time the damping torque b is proportional
to the deflectional angle .

The following motion equation is obtained for the
torque at equilibrium

J-o+b-9+D-9=0

b = 0 for undamped oscillation.

If the oscillation begins with maximum amplitude @,
att = 0sthe resulting solution to the differential equa-
tion for light damping (8% < ®,?) (oscillation) is as fol-
lows

=9 - edt-cos(wy-1)

d = b/2 ] is the damping constant and

0y = Jw} —62

the natural frequency of the damped system.

Under heavy damping (&? > my?) the system does not
oscillate but moves directly into a state of rest or equi-
librium (non-oscillating case).

The period duration T, of the lightly damped oscillat-
ing system varies only slightly from T, of the undamped
oscillating system if the damping is not excessive.

By inserting t = n - T4 into the equation

9=, - €9t cos(@; )

and ¢ = @, for the amplitude after n periods we ob-
tain the following with the relationship wy = 2 7/T

n
0

—end T

and thus from this the logarithmic decrement A:

A=8-T, =1~In[?—“}=ln[j’l]
n gDO (pn+1




By inserting6=A /Ty, w=2r/Tyand o, =27/ T,
into the equation

W =J0F —62

we obtain:

2
T, =T, 1+4A7

whereby the period T, can be calculated precisely pro-
vided that T, is known.

3.4 Forced oscillations

In the case of forced oscillations a rotating motion with
sinusoidally varying torque is externally applied to the
system. This exciter torque can be incorporated into
the motion equation as follows:

J-¢+b-9+D-@ =M -sin(@g - 1)

After a transient or settling period the torsion pendu-
lum oscillates in a steady state with the same angular
frequency as the exciter, at the same time w; can still
be phase displaced with respect to w,. W is the sys-
tem’s zero-phase angle, the phase displacement be-
tween the oscillating system and the exciter.

O = @5 sin (o - t— ¥
The following holds true for the system amplitude s
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0= .
J @0t +46%- 2

The following holds true for the ratio of system ampli-
tude to the exciter amplitude
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In the case of undamped oscillations, theoretically
speaking the amplitude for resonance (w; equal to w,)
increases infinitely and can lead to “catastrophic reso-
nance”.
In the case of damped oscillations with light damping
the system amplitude reaches a maximum where the

exciter’s angular frequency g ., is lower than the sys-
tem’s natural frequency. This frequency is given by

2
=292

2
2

Wres =Wy

Stronger damping does not result in excessive ampli-
tude.
For the system’s zero phase angle W the following is
true:

b d

05 = arctan

26w
ag — a5
For @ = m, (resonance case) the system’s zero-phase
angle is Wy = 90°. This is also true for 8 = 0 and the
oscillation passes its limit at this value.
In the case of damped oscillations (6 > 0) where
g < 0y, we find that 0° < W <90° and when o > m,
it is found that 90° < Wy < 180°.
In the case of undamped oscillations (6 = 0), W, = 0°
for < wyand Wy = 180° for o > w,.

4. Operation

4.1 Free damped rotary oscillations

e Connect the eddy current brake to the variable volt-
age output of the DC power supply for torsion pen-
dulum.
Connect the ammeter into the circuit.
Determine the damping constant as a function of
the current.

4.2 Forced oscillations

e Connect the fixed voltage output of the DC power
supply for the torsion pendulum to the sockets (16)
of the exciter motor.

e (Connect the voltmeter to the sockets (15) of the
exciter motor.

e Determine the oscillation amplitude as a function
of the exciter frequency and of the supply voltage.

e If needed connect the eddy current brake to the
variable voltage output of the DC power supply for
the torsion pendulum.

4.3 Chaotic oscillations

e To generate chaotic oscillations there are 4 supple-
mentary weights at your disposal which alter the
torsion pendulum’s linear restoring torque.

e To do this screw the supplementary weight to the
body of the pendulum (5).
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5. Example experiments

5.1 Free damped rotary oscillations

e To determine the logarithmic decrement A, the
amplitudes are measured and averaged out over
several runs. To do this the left and right deflec-
tions of the torsional pendulum are read off the
scale in two sequences of measurements.

e The starting point of the pendulum body is located
at +15 or —15 on the scale. Take the readings for
five deflections.

e From the ratio of the amplitudes we obtain A us-
ing the following equation

A= In[:’l}
(pn+1

n P - 0 +
0/-15 |15 |-15 [-15 [15 15 [15 [15
1]-14.8 | —14.8|-14.8|-14.8 14.8[14.8 | 14.8/14.8
2144 | 146 —14.4| -14.6[14.4 [14.4 | 14.6|14.4
3142|144 -14.0]-14.2]14.0 [14.2 [14.2[14.0
4[-13.8 | -14.0 | -13.6/-14.0/13.8|13.8 | 14.0/13.8
5/-13.6 | —13.8|-13.4|-13.6 |13.4[13.4 | 13.6/13.6
n 09 - 0P+ | A- A+
0 -15 15

1 -14.8 14.8 0.013 0.013
2 —14.5 14.5 0.02 0.02
3 —14.2 14.1 0.021 0.028
4 -13.8 13.8 0.028 0.022
5 —13.6 13.5 0.015 0.022

The average value for A comes to A = 0.0202.

e For the pendulum oscillation period T the follow-
ing is true: t = n - T. To measure this, record the
time for 10 oscillations using a stop watch and cal-
culate T.

T=19s
e From these values the damping constant & can bhe
determined fromd=A/T.
6=0.0106 s

e For the natural frequency ® the following holds

true
2
2
0= [_ﬂ] 52
T

o =3307 Hz

5.2 Free damped rotary oscillations

e To determine the damping constant & as a func-
tion of the current I flowing through the electro-
magnets the same experiment is conducted with
an eddy current brake connected at currents of
1=0.2A,04Aand 0.6 A.

I=02A

n o - gP - A-
0|-15 =15 =15 =15 |-15

11-13.6 | -13.8 | -13.8 | -13.6|-13.7 | 0.0906
2|-126 | -12.8 |-12.6 | -12.4|-12.6 | 0.13
3/-11.4|-118 |-11.6 | -11.4|-11.5 | 0.0913
41-104 | -10.6 | -104 | -10.4|-10.5 | 0.0909
5 92| 96| 96| 96| 9.5 0.1

e ForT=1.9sand the average value of A = 0.1006
we obtain the damping constant: 8 = 0.053 s

I=04A

n o - ﬂa - A -
0| -15 | -15 -15 =15 -15

1 -11.8|-11.8 | -11.6| -11.6 | =11.7 | 0.248
2 -9.2| -9.0 -9.0] -92 9.1 0.25
3 7.2 -7.2 7.0 =7.0 -7.1| 0.248
4 -5.8| -5.6 -5.4| 52 -5.5| 0.25
5 —4.2| 4.2 —4.0| 4.0 —4.1| 0.29

e ForT=1.9sand an average value of A =0.257 we
obtain the damping constant: & = 0.135 s

I=0.6A

n o - ﬂa - A -
0 |-15 -15 -15 -15 =15

1] -9.2 -9.4 -9.2| 9.2, -93 0.478
2| 54 -5.2 -5.6| -5.8, -55 0.525
3| =32 3.2 -3.2| 34, =33 0.51
4 | -1.6 -1.8 -1.8| -1.8, -1.8 0.606
5| -0.8 —0.8 -0.8| -0.8, -0.8 0.81

e ForT=1.9sand an average value of A = 0.5858
we obtain the damping constant: 8 = 0.308 s

5.3 Forced rotary oscillation

o Take a reading of the maximum deflection of the
pendulum body to determine the oscillation am-
plitude as a function of the exciter frequency or
the supply voltage.

T=19s

Motor voltage V ¢
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e After measuring the period T the natural frequency 5.0 13
of the system m, can be obtained from 6.0 1.8
@y = 2 /T = 3.3069 Hz ;g ;6‘
e The most extreme deflection arises at a motor volt- 8:0 3:6
age of 7.6 V, i.e. the resonance case occurs. 9.0 16
e Then the same experiment is performed with an 10.0 10
eddy current brake connected at currents of
1=0.2A,04Aand 0.6 A. 1=0.6A
[=02A Motor voltage V [
Motor voltage V [0 3.0 0.9
30 09 4.0 1.1
5.0 1.2
4.0 1.1
6.0 1.6
5.0 1.2
7.0 2.8
6.0 1.7
7.6.0 3.6
7.0 29
8.0 2.6
7.6 15.2
9.0 1.3
8.0 43 10.0 1.0
9.0 1.8 - -
10.0 1.1
1=04A e From these measurements the resonance curves can
: be plotted in a graph depicting the amplitudes
Motor voltage V [ against the motor voltage. ’ .
e Theresonant frequency can be determined by find-
3.0 0.9 . .
4.0 11 ing the half-width value from the graph.
A
[skt]
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i 1=0.0A
15 |
L 1=0.2A
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5
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Resonance curves
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