3B SCIENTIFIC® PHYSICS

5g Accelerometer U11363

Instruction sheet

07/07 Hh

1. Safety instructions

- Never exceed the maximum acceleration of 1500 times gravitational acceleration in any direction, to avoid permanent damage to the semiconductor built into the small black box!
- The maximum height from which the sensor can survive dropping onto a hard surface is 1.2 m.
- Only use the accelerometer 5-g for educational purposes!

The 5g accelerometer is not suitable for safety-related applications.

2. Description

Sensor box with permanently connected semiconductor acceleration sensor, Z-axis sensitive, for the measurement of gravity and the general acceleration of masses up to $\pm 5 \text{ x g}$. The effective axis (Z-axis) is marked with an arrow and the label "Earth's Gravity Field" on the acceleration sensor.

"Capacitive" method of measurement (g-cell) with built-in signal linearisation, low-pass filtering, temperature compensation and automatic self-test. The sensor box is automatically detected by the 3B NET*lab*^{\mathbb{M}} interface.

3. Scope of delivery

- 1 Sensor box with permanently connected acceleration sensor, cable length 2 m.
- 1 Velcro strip, 500 mm long, 20 mm wide, selfadhesive
- 1 8-pin miniDIN connecting lead, 60 cm length
- 1 Instruction sheet for U11363

4. Technical data

Measurement range:	0 to $\pm 50 \text{ m/s}^2$	
Sensor type:	Capacitive semiconduc- tor sensor	
Sensitivity:	Typically 400mV/g	
Non-linearity:	No more than $\pm 1\%$ of the full measurement range.	
Resolution:	0.03 m/s ²	
Band width:	typically 50 Hz	
Drill hole for sensor attachment:	3 mm diam. max.	

5. Operation

- Place the sensor box alongside the experiment and attach the acceleration sensor (small black box) to the mass to be investigated (target). Use the supplied Velcro strip or a clamp for this purpose.
- Read the value of the acceleration from the display on the 3B NET*log*[™] unit.

6. Applications

Demonstration track and air track experiments:

Downward acceleration

Elastic and non-elastic impact

Oscillating spring-mass system

High-resolution measurement of objects' inclination

Pendulum oscillations

Jumping experiments; "bungee jumping"

7. Sample experiment

Acceleration measurement in a damped oscillating spring-mass system

-	• •	•	
12001	11KOd	00111	nmonti
RPOI	men	енн	onnem
ILC G L	an ca	cyai	PITCILL

1 3B	NET <i>log</i> ™	interface	U11300
1 3B	NET <i>lab</i> ™	software program	U11310
1 5-g accelerometer		U11363	
1 Sta	nd base		U13270
1 Stand rod, 750 mm length		U15003	
1 Sta	nd rod, 250	mm length	U15001
2 Un	iversal clam	os	U13255
1 Coi	l spring 3 N/	m	U15027
1 We	ight 100 g, fi	rom	U30016
	ot up the of	winmont for the o	norimont oc in

• Set up the equipment for the experiment as in Fig. 1.

- Run the 3B NET*lab*[™] software with the appropriate template for the experiment using the 5g accelerometer.
- Attach the acceleration sensor to the weight with a piece of Velcro.
- Suspend the weight and acceleration sensor from the eye at the bottom of the coil spring and be careful not to hinder the oscillating motion.
- Drape the connecting lead for the acceleration sensor over the universal clamp, as shown in Fig. 1. This adds further to the damping.
- Pull down the weight by hand to the level of the stand base and release it.
- Start recording the measurement data in 3B NET/ab[™] (Fig. 2).
- Analyse the recorded chart.

Fig. 1 Acceleration measurement for a damped oscillation of a mass on a spring

Fig. 2 Monitor display of the damped oscillation of a mass on a spring in 3B NET*lab*TM (U11310)

3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Germany • <u>www.3bscientific.com</u> Subject to technical amendments © Copyright 2007 3B Scientific GmbH