3B SCIENTIFIC® PHYSICS

Calorimeter with heating coil, 1200 ml 1000821

Instruction sheet

04/12 ALF

- 1 Heating coil
- 2 4-mm sockets
- 3 Stirrer
- 4 Opening for thermometer
- 5 Calorimeter lid
- 6 Calorimeter vessel
- 7 Lid clamp

1. Safety instructions

Experiments are conducted with hot liquid. Caution: danger of burns and scalding!

- During use, always fasten the calorimeter lid.
- Set up the experiment on an even surface.
- Take extreme care while emptying the calorimeter of its contents after conducting the experiment.

The calorimeter is made of glass, which is fragile and could therefore break and cause injury.

- Be careful with the calorimeter vessel.
- When inserting solid test bodies into the calorimeter, make sure that they do not bang against the side of the glass.

2. Description

The calorimeter is for determining specific heat capacities, conversion energies of materials, mixing temperatures as well as measurement of electrical equivalents of heat.

The equipment consists of a double-walled, heat insulating plastic container with an insulating vessel inside made of reflecting glass. The lid has an opening for a thermometer, two 4-mm sockets for connecting the power for the heating filament and a stirrer made of heat-resistant plastic. The calorimeter is equipped with a heating filament, electrically insulated to avoid decomposition of filament and terminals due to electrolytic processes.

The calorimeter is supplied with a plastic beaker for protection during transport (see Fig 1).

• Take out the beaker before using the equipment.

3. Technical data

Max. heater voltage:	25 V
Max. heating power:	approx. 160 W
Heat capacity:	approx. 200 J/K
Contents of insulated	
container:	approx. 1200 ml
Dimensions:	240 x 120 mm dia.
Weight:	approx. 0.8 kg

4. Operation

When in use, the heating filament must be immersed in the water to a depth of at least 2 cm.

- Never use the filament in the dry.
- Experiments should be conducted using distilled water.
- After each series of measurements, the calorimeter and heating filament should be cleaned and dried.

5. Additionally required equipment

5.1 For measuring temperature

1 Digital Thermometer, 1 Channel and	1002793
1 K-Type NiCr-Ni Immersion Sensor	1002804
or 1 Tube thermometer	1003526

5.2 For determining specific heat capacity of solids

Aluminium shot, 100 g	1000832
Copper shot, 200 g	1000833
Glass shot, 100 g	1000834

5.3 To power the heater

1 DC power supply 0 - 20 V, 0 - 5 A (230 V, 50/60 Hz)
1003312
or
1 DC power supply 0 - 20 V, 0 - 5 A (115 V, 50/60 Hz)

5.4 To measure time

1 Stopwatch, 15 min	1003369
i stopwatch, 15 min	1003365

Fig 1 Taking out the transport protection

1003311