

> EXPERIMENT PROCEDURE

- e asure the height of the curvature h for two watch glasses for a given distance s between the tips of the spherometer legs.
- Determine the radius of curvature R of both glasses.
- Compare the methods for both convex and concave surfaces.

BASIC PRINCIPLES

A spherometer consists of a tripod with the three legs tipped by steel points and forming an equilateral triangle with sides of 50 mm A micrometer screw, the tip of which is the point to be measured, passes through the center of the tripod. A vertical rule indicates the height h of the measured point above a plane defined by the tips of the three legs. The height of the measured point can be read off to an accuracy of $1 \mu \mathrm{~m}$ with the aid of a circular scale that rotates along with the micrometer screw.

The relationship between the distance r of all three legs from the center of the spherometer, the radius of curvature R to be determined and the height h of the surface is given by the following equation:
(1)

$$
R^{2}=r^{2}+(R-h)^{2}
$$

Rearranging for R gives:
(2)

$$
R=\frac{r^{2}+h^{2}}{2 \cdot h}
$$

The distance r can be calculated from the length s of the sides of the The distance r can be calculated from
(3)

Thus the relevant equation for R is as follows:
(4)

$$
R=\frac{s^{2}}{6 \cdot h}+\frac{h}{2}
$$

EVALUATION

The separation s between the legs of the spherometer is in this case 50 mm . When the height h is small, equation (4) can be simplified to the following:

$$
R=\frac{s^{2}}{6 \cdot h}=\frac{2500 \mathrm{~mm}^{2}}{6 \cdot h} \approx \frac{420 \mathrm{~mm}^{2}}{h}
$$

The scale of the spherometer allows readings for heights between 10 mm and $1 \mu \mathrm{~m}$ to an accuracy of $1 \mu \mathrm{~m}$, so that radii of curvature of about 40 mm to 400 m can be calculated.

Schematic for measurement of radius of curvature by means of a spherometer

Vertical cross section for measuring an object with a convex surface
Middle: Vertical cross section for measuring an object with a concave surface
Bottom: View from above

