MECHANICS / Buoyancy

ARCHIMEDES’ PRINCIPLE

OBJECTIVE
Determining buoyant updraught as a function of immersion depth.

SUMMARY
Archimedes’ principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) \(F_G \). The magnitude of this force is equal to the weight of the displaced fluid. For a regularly shaped immersed body, the updraught is proportional to the depth \(h \) to which the body is immersed as long as this is smaller than the height \(H \) of the body itself.

BASIC PRINCIPLES
Archimedes’ principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) \(F_G \). The magnitude of this force is equal to the weight of the displaced fluid.

For a regularly shaped immersed body with a surface area \(A \) and height \(H \), immersed to a depth \(h \), the following applies:

\[
\begin{align*}
F_G &= \rho \cdot g \cdot A \cdot h, \text{ where } h < H \\
F_G &= \rho \cdot g \cdot A \cdot H, \text{ where } h > H
\end{align*}
\]

This experiment uses a block of weight \(F_0 \). This weight acts on a dynamometer at the same time as the block is immersed in water to a depth \(h \), so that the total force present is given by the following:

\[
F_M = F_0 - F_G(h)
\]

EVALUATION
The values measured for the updraught \(F_G \) as a function of the relative immersion depth \(h/H \) all lie on a straight line through the origin with the following gradient:

\[
\alpha = \rho \cdot g \cdot A \cdot H
\]

The density of water can be calculated from this gradient.

EXPERIMENT PROCEDURE
• Measure the force on a body immersed in water.
• Determine the updraught and confirm that it is proportional to the depth to which the body is immersed.
• Determine the density of water.

REQUIRED APPARATUS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Immersion Block Al 100 cm³</td>
<td>1002953</td>
</tr>
<tr>
<td>1</td>
<td>Precision Dynamometer 5 N</td>
<td>1003106</td>
</tr>
<tr>
<td>1</td>
<td>Callipers, 150 mm</td>
<td>1002601</td>
</tr>
<tr>
<td>1</td>
<td>Set of 10 Beakers, Tall Form</td>
<td>1002873</td>
</tr>
<tr>
<td>1</td>
<td>Laboratory Jack II</td>
<td>1002941</td>
</tr>
<tr>
<td>1</td>
<td>Tripod Stand 150 mm</td>
<td>1002835</td>
</tr>
<tr>
<td>1</td>
<td>Stainless Steel Rod 750 mm</td>
<td>1002935</td>
</tr>
<tr>
<td>1</td>
<td>Clamp with Hook</td>
<td>1002828</td>
</tr>
</tbody>
</table>

Fig. 1: Updraught \(F_G \) as a function of relative immersion depth \(h/H \)

Fig. 2: Schematic representation