3B SCIENTIFIC® PHYSICS

Equipment set - coil for measuring hysteresis 8496112

Instruction sheet

08/06/DML

- 1 Base plate
- 2 Retainer for Hall probe
- 3 Coil
- 4 4-mm sockets
- 5 Iron samples

1. Safety instructions

Caution:

To avoid damaging the coil by overheating, do ٠ not exceed the maximum allowable current of 3 A DC.

2. Description

The for measuring hysteresis equipment set coil is for recording hysteresis curves (magnetic flux density B as a function of magnetic field strength H) for various ferromagnetic core materials.

The cylindrical coil consists of 600 compact turns in several layers mounted on a base plate. Three different iron samples can be interchanged to form the core of the coil. A retainer on the base plate accommodates the field probe.

3. Technical data		
Wire diameter:	1 mm	
Number of turns:	600	
Internal impedance:	1.5 Ω	
Inductance without core:	3.5 mH	
Dimensions:	200 x145 x 65 mm ³	
Iron samples:	140 mm x 10 mm Ø	
Material:	Construction steel, carbide metal, iron (stainless)	
Total weight:	950 g approx.	

4. Operation

To record hysteresis curves, the following apparatus is additional required:

tus is additional required.	
1 AC/DC power supply	8521131
1 Teslameter	8533981
1 Axial/tangential field probe	8533997
1 Escola 10 multimeter	8531160
Experiment leads	

- Connect the power supply, coil and ammeter in series (see Fig. 1).
- Place a core inside the coil.
- Secure the field probe in its retainer so that the tangential probe is against the coil core.
- Turn on the power supply and increase the current to the coil until the magnetic flux density *B* approaches saturation. Make sure the current to the coil does not exceed its 3-amp limit.
- Determine the magnetic field strength *H* from the current to the coil *I*, the number of turns *n*, and the length of the coil *s*.

$$H = \frac{n \cdot I}{s}$$

- Read the magnetic flux density *B* from a teslameter.
- Set the current back to zero, reverse the polarity to the coil and conduct measurements in the negative current range.
- Plot the magnetic flux density as a function of the magnetic field strength.
- Repeat the experiment with various iron samples.

Fig.1 Obtaining a hysteresis curve

Fig. 2 Example of a hysteresis curve